Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873443

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

2.
Angew Chem Int Ed Engl ; 63(6): e202314951, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934413

RESUMO

The recent expansion of the field of RNA chemical modifications has changed our understanding of post-transcriptional gene regulation. Apart from internal nucleobase modifications, 7-methylguanosine was long thought to be the only eukaryotic RNA cap. However, the discovery of non-canonical RNA caps in eukaryotes revealed a new niche of previously undetected RNA chemical modifications. We are the first to report the existence of a new non-canonical RNA cap, diadenosine tetraphosphate (Ap4 A), in human and rat cell lines. Ap4 A is the most abundant dinucleoside polyphosphate in eukaryotic cells and can be incorporated into RNA by RNA polymerases as a non-canonical initiating nucleotide (NCIN). Using liquid chromatography-mass spectrometry (LC-MS), we show that the amount of capped Ap4 A-RNA is independent of the cellular concentration of Ap4 A. A decapping enzyme screen identifies two enzymes cleaving Ap4 A-RNA,NUDT2 and DXO, both of which also cleave other substrate RNAs in vitro. We further assess the translatability and immunogenicity of Ap4 A-RNA and show that although it is not translated, Ap4 A-RNA is recognized as self by the cell and does not elicit an immune response, making it a natural component of the transcriptome. Our findings open a previously unexplored area of eukaryotic RNA regulation.


Assuntos
Fosfatos de Dinucleosídeos , Capuzes de RNA , Ratos , Animais , Humanos , Fosfatos de Dinucleosídeos/metabolismo , Mamíferos/metabolismo , Monoéster Fosfórico Hidrolases
3.
Chemistry ; 26(57): 13002-13015, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32275109

RESUMO

All four isomeric series of novel 4-substituted pyrido-fused 7-deazapurine ribonucleosides possessing the pyridine nitrogen atom at different positions were designed and synthesized. The total synthesis of each isomeric fused heterocycle through multistep heterocyclization was followed by glycosylation and derivatization at position 4 by cross-coupling reactions or nucleophilic substitutions. All compounds were tested for cytostatic and antiviral activity. The most active were pyrido[4',3':4,5]pyrimidine nucleosides bearing MeO, NH2 , MeS, or CH3 groups at position 4, which showed submicromolar cytotoxic effects and good selectivity for cancer cells. The mechanism involved activation by phosphorylation and incorporation to DNA where the presence of the modified ribonucleosides causes double-strand breaks and apoptosis.


Assuntos
Ribonucleosídeos/síntese química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Purinas/farmacologia , Ribonucleosídeos/farmacologia , Relação Estrutura-Atividade
4.
Sci Rep ; 9(1): 8697, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213632

RESUMO

The mechanism of action of various viruses has been the primary focus of many studies. Yet, the data on RNA modifications in any type of virus are scarce. Methods for the sensitive analysis of RNA modifications have been developed only recently and they have not been applied to viruses. In particular, the RNA composition of HIV-1 virions has never been determined with sufficiently exact methods. Here, we reveal that the RNA of HIV-1 virions contains surprisingly high amount of the 1-methyladenosine. We are the first to use a liquid chromatography-mass spectrometry analysis (LC/MS) of virion RNA, which we combined with m1A profiling and deep sequencing. We found that m1A was present in the tRNA, but not in the genomic HIV-1 RNA and the abundant 7SL RNA. We were able to calculate that an HIV-1 virion contains per 2 copies of genomic RNA and 14 copies of 7SL RNA also 770 copies of tRNA, which is approximately 10 times more than thus far expected. These new insights into the composition of the HIV-1 virion can help in future studies to identify the role of nonprimer tRNAs in retroviruses. Moreover, we present a promising new tool for studying the compositions of virions.


Assuntos
Adenosina/análogos & derivados , HIV-1/genética , RNA Citoplasmático Pequeno/genética , RNA Viral/genética , Partícula de Reconhecimento de Sinal/genética , Vírion/genética , Adenosina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Genoma Viral/genética , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Espectrometria de Massas/métodos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus/genética
5.
Tumour Biol ; 36(8): 5873-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25712375

RESUMO

Cancer-associated fibroblasts (CAFs) significantly influence biological properties of many tumors. The role of these mesenchymal cells is also anticipated in human gliomas. To evaluate the putative role of CAFs in glioblastoma, we tested the effect of CAF conditioned media on the proliferation and chemotaxis of glioma cells. The proliferation of glioma cells was stimulated to similar extent by both the normal fibroblasts (NFs) and CAF-conditioned media. Nevertheless, CAF-conditioned media enhanced the chemotactic migration of glioma cells significantly more potently than the media from normal fibroblasts. In order to determine whether CAF-like cells are present in human glioblastomas, immunofluorescence staining was performed on tissue samples from 20 patients using markers typical for CAFs. This analysis revealed regular presence of mesenchymal cells expressing characteristic CAF markers α-smooth muscle actin and TE-7 in human glioblastomas. These observations indicate the potential role of CAF-like cells in glioblastoma biology.


Assuntos
Movimento Celular , Meios de Cultivo Condicionados , Fibroblastos/patologia , Glioblastoma/patologia , Actinas/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Microambiente Tumoral/genética
6.
Int J Biochem Cell Biol ; 44(5): 738-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22306301

RESUMO

Malignant gliomas exhibit abnormal expression of proteolytic enzymes that may participate in the uncontrolled cell proliferation and aberrant interactions with the brain extracellular matrix. The multifunctional membrane bound serine aminopeptidase dipeptidyl peptidase (DPP)-IV has been linked to the development and progression of several malignancies, possibly both through the enzymatic and nonenzymatic mechanisms. In this report we demonstrate the expression of DPP-IV and homologous proteases fibroblast activation protein, DPP8 and DPP9 in primary cell cultures derived from high-grade gliomas, and show that the DPP-IV-like enzymatic activity is negatively associated with their in vitro growth. More importantly, the DPP-IV positive subpopulation isolated from the primary cell cultures using immunomagnetic separation exhibited slower proliferation. Forced expression of the wild as well as the enzymatically inactive mutant DPP-IV in glioma cell lines resulted in their reduced growth, migration and adhesion in vitro, as well as suppressed glioma growth in an orthotopic xenotransplantation mouse model. Microarray analysis of glioma cells with forced DPP-IV expression revealed differential expression of several candidate genes not linked to the tumor suppressive effects of DPP-IV in previous studies. Gene set enrichment analysis of the differentially expressed genes showed overrepresentation of gene ontology terms associated with cell proliferation, cell adhesion and migration. In conclusion, our data show that DPP-IV may interfere with several aspects of the malignant phenotype of glioma cells in great part independent of its enzymatic activity.


Assuntos
Dipeptidil Peptidase 4/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Transdução de Sinais/genética , Animais , Adesão Celular , Ciclo Celular , Movimento Celular , Proliferação de Células , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Perfilação da Expressão Gênica , Glioma/enzimologia , Humanos , Separação Imunomagnética , Masculino , Camundongos , Mutação , Cultura Primária de Células , Transfecção , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...